The Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila

نویسندگان

  • Nan Liu
  • Masashi Abe
  • Leah R. Sabin
  • Gert-Jan Hendriks
  • Ammar S. Naqvi
  • Zhenming Yu
  • Sara Cherry
  • Nancy M. Bonini
چکیده

MicroRNAs (miRNAs) are endogenous noncoding small RNAs with important roles in many biological pathways; their generation and activity are under precise regulation [1-3]. Emerging evidence suggests that miRNA pathways are precisely modulated with controls at the level of transcription [4-8], processing [9-11], and stability [12, 13], with miRNA deregulation linked with diseases [14] and neurodegenerative disorders [15]. In the Drosophila miRNA biogenesis pathway, long primary miRNA transcripts undergo sequential cleavage [16-18] to release the embedded miRNAs. Mature miRNAs are then loaded into Argonaute1 (Ago1) within the RNA-induced silencing complex (RISC) [19, 20]. Intriguingly, we found that Drosophila miR-34 displays multiple isoforms that differ at the 3' end, suggesting a novel biogenesis mechanism involving 3' end processing. To define the cellular factors responsible, we performed an RNA interference (RNAi) screen and identified a putative 3'→5' exoribonuclease CG9247/nibbler essential for the generation of the smaller isoforms of miR-34. Nibbler (Nbr) interacts with Ago1 and processes miR-34 within RISC. Deep sequencing analysis revealed a larger set of multi-isoform miRNAs that are controlled by nibbler. These findings suggest that Nbr-mediated 3' end processing represents a critical step in miRNA maturation that impacts miRNA diversity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 3′-to-5′ Exoribonuclease Nibbler Shapes the 3′ Ends of MicroRNAs Bound to Drosophila Argonaute1

BACKGROUND MicroRNAs (miRNAs) are ~22 nucleotide (nt) small RNAs that control development, physiology, and pathology in animals and plants. Production of miRNAs involves the sequential processing of primary hairpin-containing RNA polymerase II transcripts by the RNase III enzymes Drosha in the nucleus and Dicer in the cytoplasm. miRNA duplexes then assemble into Argonaute proteins to form the R...

متن کامل

Drosophila exoribonuclease nibbler is a tumor suppressor, acts within the RNAi machinery and is not enriched in the nuage during early oogenesis

BACKGROUND micro RNAs (miRNAs) are important regulators of many biological pathways. A plethora of steps are required to form, from a precursor, the mature miRNA that eventually acts on its target RNA to repress its expression or to inhibit translation. Recently, Drosophila nibbler (nbr) has been shown to be an important player in the maturation process of miRNA and piRNA. Nbr is an exoribonucl...

متن کامل

Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila

Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is 'sliced' by Ago2, then 3'-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly asso...

متن کامل

The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila

Nibbler (Nbr) is a 3'-to-5' exonuclease that trims the 3'end of microRNAs (miRNAs) to generate different length patterns of miRNAs in Drosophila. Despite its effect on miRNAs, we lack knowledge of its biological significance and whether Nbr affects other classes of small RNAs such as piRNAs and endo-siRNAs. Here, we characterized the in vivo function of nbr by defining the Nbr protein expressio...

متن کامل

The 3 ’ - 5 ’ exoribonuclease Dis 3 regulates the expression of specific microRNAs in Drosophila

The 3’-5’ exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs. Benjamin P. Towler, Christopher I. Jones, Sandra C. Viegas, Patricia Apura, Joseph A. Waldron, Sarah K. Smalley, Cecilia M. Arraiano and Sarah F. Newbury*. 1 Brighton and Sussex Medical School, Medical Research Building, University of Sussex, Falmer, Brighton, BN1 9PS, UK. 2 Institut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011